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Abstract. The Schur class, denoted by S(D), is the set of all functions analytic and bounded
by one in modulus in the open unit disc D in the complex plane C, that is

S(D) = {φ ∈ H∞(D) : ‖φ‖∞ := sup
z∈D

|φ(z)| ≤ 1}.

The elements of S(D) are called Schur functions. A classical result going back to I. Schur
states: A function φ : D → C is in S(D) if and only if there exist a Hilbert space H and an
isometry (known as colligation operator matrix or scattering operator matrix)

V =

[
a B
C D

]
: C⊕H → C⊕H,

such that φ admits a transfer function realization corresponding to V , that is

φ(z) = a+ zB(IH − zD)−1C (z ∈ D).
An analogous statement holds true for Schur functions on the bidisc. On the other hand,
Schur-Agler class functions on the unit polydisc in Cn is a well-known “analogue” of Schur
functions on D. In this paper, we present algorithms to factorize Schur functions and Schur-
Agler class functions in terms of colligation matrices. More precisely, we isolate checkable
conditions on colligation matrices that ensure the existence of Schur (Schur-Agler class)
factors of a Schur (Schur-Agler class) function and vice versa.

1. Introduction

In this paper, Dn denotes the open unit polydisc in Cn, n ≥ 1. By definition, the classical
Schur class S(Dn) consists of complex-valued analytic functions mapping from Dn into the
closed unit disk D, that is

S(Dn) = {φ : Dn → C : φ is analytic and ‖φ‖∞ ≤ 1},

where ‖ · ‖∞ denotes the supremum norm over Dn. In other words, S(Dn) is the closed unit
ball of the commutative Banach algebra H∞(Dn), the set of all bounded analytic functions
on Dn under the supremum norm. The elements in the set S(Dn) are called Schur functions
[30, 31].

It is a very remarkable fact that the one variable (and two variables too but not more than
two variables, as we will see soon) Schur functions are closely related, via isometric colligations
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(or “lurking isometries” [3]), to bounded linear operators on Hilbert spaces. Recall that a
colligation (or scattering operator matrix ) is any bounded linear operator V of the form

V =

[
A B
C D

]
: E ⊕H → E∗ ⊕H,

where H, E and E∗ are Hilbert spaces. The colligation is said to be isometry if V is isometry.
Now, let H be a Hilbert space and let

(1.1) V =

[
a B
C D

]
: C⊕H → C⊕H,

be an isometric colligation. Then a straightforward but lengthy and conceptual calculation
(cf. page 73, [3]) verifies that τV ∈ S(D), where

τV (z) = a+ zB(IH − zD)−1C (z ∈ D).
We call τV the transfer function realization of the isometric colligation V . Conversely, if
φ ∈ S(D), then there exist a Hilbert space H and an isometric colligation V on C⊕H, as in
(1.1), such that

φ = τV .

We now pause, with our background so far, to state one of our main results specializing to
the n = 1 case (see Theorem 3.4): Suppose φ ∈ S(D). If φ = φ1φ2 for some φ1 and φ2 in
S(D), then there exist Hilbert spaces H1 and H2 and an (explicit) isometric colligation

(1.2) V =

[
a B
C D

]
:=

 a B1 B2

C1 D11 D12

C2 D21 D22

 : C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2),

such that

(1.3) D21 = 0 and aD12 = C1B2,

and φ = τV , where τV (z) = a+ zB(IH1⊕H2 − zD)−1C, z ∈ D.
The converse is true under an additional assumption that φ(0) 6= 0 (see Theorem 4.1, Section
4, for the case φ(0) = 0): If φ = τV for some isometric colligation V as in (1.2) satisfying
(1.3) and a := φ(0) 6= 0, then φ = φ1φ2 for some φ1 and φ2 in S(D). Moreover, in this case,
φ and ψ are explicitly given by φ1 = τV1 and φ2 = τV2 where

V1 =

[
α B1

1
β
C1 D11

]
∈ B(C⊕H1) and V2 =

[
β 1

α
B2

C2 D22

]
∈ B(C⊕H2),

are isometric colligations and α and β are non-zero scalars which satisfy the following condi-
tions

|β|2 = |a|2 + C∗
1C1 and α =

a

β
.

In view of the above results, it is now clear that the goal of this paper is to clarify the link
between isometric colligations and factors of Schur functions.

We also remark that the above one-variable factorization of Schur functions also relates
to factorizations of Sz.-Nagy and Foias characteristic functions [20] as well as Brodskĭi col-
ligations [9] in terms of invariant subspaces of certain operators [9, Theorem 2.6]. More
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specifically, see the idea of the product of colligations (as well as for a similar result as above,
but in one direction) in [4, Theorem 1.2.1] and [9, Theorem 2.8]. However, here our results are
different in the following sense: (i) we are interested in scalar-valued (unlike operator-valued
functions in [4, 9]) Schur functions, (ii) our isometric colligations are explicit, (iii) our method
is reversible (see Subsection 5.5), and (perhaps most importantly) (iv) our ideas works in the
setting of n-variable Schur(-Agler) functions.

We continue the discussion by presenting a transfer function realization of a two variables
Schur function (see [2] and also page 171, [3]):

Theorem 1.1 (Agler). Let φ be a function on D2. Then φ ∈ S(D2) if and only if there exist
Hilbert spaces H1 and H2 and an isometric colligation

V =

[
a B
C D

]
∈ B(C⊕ (H1 ⊕H2)),

such that φ = τV where

τV (z) = a+B(IH1⊕H2 − EH1⊕H2(z)D)−1EH1⊕H2(z)C,

and EH1⊕H2(z) = z1IH1 ⊕ z2IH2 for all z ∈ D2.

Here and throughout the paper, elements of Cn will be denoted by z, that is, z =
(z1, . . . , zn) ∈ Cn. Also we denote by B(H1,H2) (and simply by B(H1) if H1 = H2) the
set of all bounded linear operators from the Hilbert space H1 into the Hilbert space H2.

Agler’s result exemplify the possibility of transfer function realizations (corresponding to
isometric colligations) of Schur functions in n-variables, n > 2. This is, however, not true in
general, and the possibility of transfer function realizations of functions in S(Dn), n ≥ 3, is
closely related to (as also the ideas in Agler’s proof suggests) the subtlety of von Neumann
inequality of commuting n-tuples of contractions, n > 2, on Hilbert spaces.

This motivates consideration of a special class of bounded analytic functions: The Schur-
Agler class SA(Dn) [1] consists of scalar-valued analytic functions φ on Dn such that φ satisfies
the n-variables von Neumann inequality, that is

‖φ(T1, . . . , Tn)‖B(H) ≤ 1,

for any n-tuples of commuting strict contractions on a Hilbert space H. The elements of
SA(Dn) are called Schur-Agler class functions. If φ ∈ SA(Dn), then we also say that φ is
a function in the Schur-Agler class SA(Dn). The following theorem of Jim Agler [1] then
obtains:

Theorem 1.2 (Agler). Let φ be a function on Dn. Then φ ∈ SA(Dn) if and only if there
exist Hilbert spaces H1, . . . ,Hn and an isometric colligation

V =

[
a B
C D

]
∈ B(C⊕Hn

1 ),

such that φ = τV where

τV (z) = a+B(IHn
1
− EHn

1
(z)D)−1EHn

1
(z)C,
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Hn
1 =

n⊕
i=1

Hi and EHn
1
(z) =

n⊕
i=1

ziIHi
for all z ∈ Dn.

Following the classical (one variable) von Neumann inequality, Ando [6] proved that the
von Neumann inequality also holds for commuting pairs of contractions. On the other hand,
as we have pointed out earlier, the von Neumann inequality does not hold in general for
n-tuples, n > 2, of commuting contractions [12, 33]. It follows then that

S(D) = SA(D) and S(D2) = SA(D2),

but S(Dn) ) SA(Dn) for all n > 2.
Needless to say, transfer function realizations and isometric colligation matrices correspond-

ing to Schur-Agler class functions in n-variables, n ≥ 1, are among the most frequently used
techniques in problems in function theory, operator theory and interdisciplinary subjects such
as Nevanlinna-Pick interpolation [2], commutant lifting theorem and analytic model theory
[29, 15, 16], scattering theory [7], interpolation and Toeplitz corona theorem [8], electrical
network theory [19, 20], signal processing [22, 17], linear systems [21, 13, 32], operator alge-
bras [25, 26] and image processing [28] (just to name a few). In this context and for deeper

studies, we refer the reader to a number of classic work such as Livšic [23, 24], Brodskĭi [9],

Brodskĭi and M. Livšic [10] and Pavlov [27]. Also see [5], [11] and [18] and the references
therein.
From this point of view, along with a question of interest in its own right, here we aim

at finding necessary and sufficient conditions on isometric colligations which guarantee that
a Schur-Agler class function factors into a product of Schur-Agler class functions. More
precisely, we aim to solve the following problem: Given θ ∈ SA(Dn), find a set of necessary
and sufficient conditions on isometric colligations V which ensures that

θ = τV = φψ,

for some (explicit) φ and ψ in SA(Dn).
In this paper we give a complete answer to this question by identifying checkable conditions

on isometric colligations. Our results and approach are new even in the case of one variable
and two-variable Schur functions (however, see the paragraph preceding Theorem 1.1). In this
context, it is also worth noting that the structure of bounded analytic functions in several
variables is much more complicated than the structure of Schur functions on the unit disc (for
instance, consider the existence of inner-outer factorizations of bounded analytic functions
in one variable). From this point of view, our approach is also focused on providing an
understanding of the complex area of bounded analytic functions of two or more variables
(as the transfer function realization technique has already proven to be extremely useful in
proving many classical results like Nevanlinna-Pick interpolation theorem and Carathéodory
interpolation theorem etc. in several variables).

Our main results, specializing to the n = 2 case, yields the following: Suppose θ ∈ S(D2)
and a := θ(0) 6= 0. Then:
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(1) Theorem 2.4 implies that : θ(z) = φ1(z1)φ2(z2), z ∈ D2, for some φ1 and φ2 in S(D) if
and only if θ = τV for some isometric colligation

V =

 a B1 B2

C1 D11
1
a
C1B2

C2 0 D22

 ∈ B(C⊕ (H1 ⊕H2)).

(2) Theorem 3.4 implies that : θ = φψ for some φ and ψ in S(D2) if and only if there exist
Hilbert spaces {Mi}2i=1 and {Ni}2i=1 and isometric colligation

V =

 a B1 B2

C1 D11 D12

C2 D21 D22

 ∈ B
(
C⊕ ((M1 ⊕N1)⊕ (M2 ⊕N2))

)
,

such that θ = τV , and representing Bi, Ci and Dij as

Bi =
[
Bi(1) Bi(2)

]
∈ B(Mi ⊕Ni,C) and Ci =

[
Ci(1)
Ci(2)

]
∈ B(C,Mi ⊕Ni),

and Dij =

[
Dij(1) Dij(12)
Dij(21) Dij(2)

]
∈ B(Mj ⊕ Nj,Mi ⊕ Ni), respectively, one has Dij(21) = 0

and aDij(2) = Ci(1)Bj(2), i, j = 1, 2.
Moreover, in the case of (1) (see Theorem 2.3): φ1(z) = τṼ1

(z) and φ2(z) = τṼ2
(z), z ∈ D,

where

Ṽ1 =

[
α B1

1
β
C1 D11

]
and Ṽ2 =

[
β 1

α
B2

C2 D22

]
,

and α and β are non-zero scalars satisfying the conditions |β|2 = 1 − C∗
2C2 and α = a

β
; and

in the case of (2) (see Theorem 3.3): φ(z) = τV1(z) and ψ(z) = τV2(z), z ∈ D2, where

V1 =

[
α B(1)

1
β
C(1) D(1)

]
and V2 =

[
β 1

α
B(2)

C(2) D(2)

]
,

and

D(1) =
[
Dkl(1)

]2
k,l=1

, D(2) =
[
Dkl(2)

]2
k,l=1

, B(i) =
[
B1(i) B2(i)

]
and C(i) =

[
C1(i)
C2(i)

]
,

for all i = 1, 2, and α and β are non-zero scalars satisfying the conditions |β|2 = |a|2 +
C(1)∗C(1) and α = a

β
.

Remark 1.3. The assumption that θ(0) 6= 0 is not essential for the necessary parts of the
above results (and Theorems 2.4 and 3.4) and the case of θ(0) = 0 will be treated separately
in Section 4. As we will see there, functions vanishing at the origin reveals more detailed
properties of corresponding isometric colligations.

The rest of this paper is organized as follows. Section 2 contains the definition of Fm(n)
class of isometric colligations, 1 ≤ m < n, and a classification of factorizations of functions
in the Schur-Agler class SA(Dn), n > 1, into Schur-Agler class factors with fewer variables.
Section 3 introduces the F(n) class of isometric colligations, which connects the representation
of a Schur-Agler class function to its Schur-Agler class factors. In Section 4, we will discuss
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factorizations of Schur-Agler class functions vanishing at the origin. The concluding Section
5 outlines some concrete examples and presents results concerning one variable factors of
Schur-Agler class functions and a remark on the reversibility of our method of factorizations.

2. Factorizations and Property Fm(n)

In this section, we present results concerning factorizations of Schur-Agler class functions
in SA(Dn), n > 1, into Schur-Agler class factors with fewer variables. More specifically, our
interest here is to identify (and then classify) isometric colligations V such that τV ∈ SA(Dn)
and

τV (z) = φ(z1, . . . , zm)ψ(zm+1, . . . , zn) (z ∈ Dn),

for some (canonical, in terms of V ) φ ∈ SA(Dm) and ψ ∈ SA(Dn−m). Throughout this
section we will always assume that 1 ≤ m < n.

We begin with fixing some notation. Given 1 ≤ m < p ≤ n and Hilbert spaces H1, . . . ,Hn,
we set

Hp
m = Hm ⊕Hm+1 ⊕ · · · ⊕ Hp.

In particular, Hn
1 =

n⊕
i=1

Hi. Moreover, with respect to the orthogonal decomposition Hn
1 =

Hm
1 ⊕Hn

m+1, we represent an operator D ∈ B(Hn
1 ) as

D =

[
D11 D12

D21 D22

]
∈ B(Hm

1 ⊕Hn
m+1).

Similarly, if E and E∗ are Hilbert spaces, B ∈ B(Hn
1 , E) and C ∈ B(E∗,Hn

1 ), then we write

B =
[
B1 B2

]
∈ B(Hm

1 ⊕Hn
m+1, E) and C =

[
C1

C2

]
∈ B(E∗,Hm

1 ⊕Hn
m+1).

Now we are ready to introduce the central object of this section.

Definition 2.1. Let 1 ≤ m < n. We say that an isometry V ∈ B(H) satisfies property Fm(n)
if there exist Hilbert spaces H1, . . . ,Hn such that H = C⊕Hn

1 , and representing V as

V =

 a B1 B2

C1 D11 D12

C2 D21 D22

 ∈ B(C⊕Hm
1 ⊕Hn

m+1),

one has D21 = 0 and aD12 = C1B2.

More specifically, an isometry V ∈ B(H) satisfies property Fm(n) if there exist Hilbert
spaces H1, . . . ,Hn such that H = C⊕H1 ⊕ · · · ⊕ Hn, and writing V as

V =


a B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 ,
on C⊕ (H1 ⊕ · · · ⊕ Hn), one has

Dij = 0,
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for all i = m+ 1, · · · , n and j = 1, · · · ,m, and

aDij = CiBj,

for all i = 1, · · · ,m and j = m+ 1, · · · , n. By way of example, we consider the two variables
situation. We say that an isometry V satisfies property F1(2) if there exist Hilbert spaces H1

and H2 such that

V =

 a B1 B2

C1 D11 D12

C2 0 D22

 ∈ B(C⊕H1 ⊕H2)

and aD12 = C1B2.
Let us introduce some more notation. Let 1 ≤ m < p ≤ n. We set

EHp
m
(z) = zmIHm ⊕ · · · ⊕ zpIHp (z ∈ Cn).

Also for X ∈ B(Hp
m), ‖X‖ ≤ 1, define

Rp
m(z, X) =

(
IHp

m
− EHp

m
(z)X

)−1

(z ∈ Dn).

Note that Rp
m(z, X) is a function of {zm, . . . , zp} variables. Moreover, we will denote Rn

1 (z, X)
simply by R(z, X).

Now we proceed to prove that a pair of isometric colligations is naturally associated with an
isometric colligation satisfying property Fm(n). More specifically, given τV1 ∈ SA(Dm) and
τV2 ∈ SA(Dn−m) for some isometric colligations V1 and V2, we aim to construct an explicit
isometric colligation V such that V satisfies property Fm(n) and

τV (z) = τV1(z1, . . . , zm)τV2(zm+1, . . . , zn) (z ∈ Dn).

To this end, let H1, . . . ,Hn be Hilbert spaces. Suppose

V1 =

[
a1 B1

C1 D1

]
∈ B(C⊕Hm

1 ), and V2 =

[
a2 B2

C2 D2

]
∈ B(C⊕Hn

m+1),

are isometric colligations. Define Ṽ1 and Ṽ2 in B(C⊕Hm
1 ⊕Hn

m+1) by

Ṽ1 =

a1 B1 0
C1 D1 0
0 0 I

 and Ṽ2 =

a2 0 B2

0 I 0
C2 0 D2

 ,
and set V = Ṽ1Ṽ2. It is easy to check, by swapping rows and columns (of Ṽ2), that Ṽ1 and Ṽ2
are isometries and thus the isometric colligation

V =

a1a2 B1 a1B2

a2C1 D1 C1B2

C2 0 D2

 ∈ B
(
C⊕ (Hm

1 ⊕Hn
m+1)

)
,

satisfies property Fm(n). Let z ∈ Dn. Clearly

τV (z) = a1a2 +
[
B1 a1B2

]
R(z,

[
D1 C1B2

0 D2

]
)EHn

1
(z)

[
a2C1

C2

]
,
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where

R
(
z,

[
D1 C1B2

0 D2

])−1

= IHn
1
−

[
EHm

1
(z) 0

0 EHn
m+1

(z)

] [
D1 C1B2

0 D2

]
=

[
IHm

1
− EHm

1
(z)D1 −EHm

1
(z)C1B2

0 IHn
m+1

− EHn
m+1

(z)D2

]
.

By the inverse formula of an invertible upper triangular matrix, it follows that

R
(
z,

[
D1 C1B2

0 D2

])
=

[
Rm

1 (z, D1) Rm
1 (z, D1)EHm

1
(z)C1B2R

n
m+1(z, D2)

0 Rn
m+1(z, D2)

]
.

We now infer, in view of the above equality, that

τV (z) = a1a2 +
[
B1 a1B2

]
R
(
z,

[
D1 C1B2

0 D2

])
EHn

1
(z)

[
a2C1

C2

]
= a1a2 +

[
B1 a1B2

] [Rm
1 (z, D1) Rm

1 (z, D1)EHm
1
(z)C1B2R

n
m+1(z, D2)

0 Rn
m+1(z, D2)

]
×

[
a2EHm

1
(z)C1

EHn
m+1

(z)C2

]
= a1a2 + a2B1R

m
1 (z, D1)EHm

1
(z)C1 + a1B2R

n
m+1(z, D2)EHn

m+1
(z)C2

+B1R
m
1 (z, D1)EHm

1
(z)C1B2R

n
m+1(z, D2)EHn

m+1
(z)C2

=
(
a1 +B1R

m
1 (z, D1)EHm

1
(z)C1

)(
a2 +B2R

n
m+1(z, D2)EHn

m+1
(z)C2

)
= τV1(z1, . . . , zm)τV2(zm+1, . . . , zn),

for all z ∈ Dn. We have therefore proved the following result:

Theorem 2.2. Let 1 ≤ m < n, and let H1, . . . ,Hn be Hilbert spaces. Suppose

V1 =

[
a1 B1

C1 D1

]
∈ B(C⊕ (

m⊕
i=1

Hi)) and V2 =

[
a2 B2

C2 D2

]
∈ B(C⊕ (

n⊕
i=m+1

Hi)),

are isometric colligations. Define Ṽ1, Ṽ2 and V in B
(
C⊕

(
(

m⊕
i=1

Hi)⊕ (
n⊕

i=m+1

Hi)
))

by

Ṽ1 =

a1 B1 0
C1 D1 0
0 0 I

 and Ṽ2 =

a2 0 B2

0 I 0
C2 0 D2

 ,
and V = Ṽ1Ṽ2, respectively. Then

V =

a1a2 B1 a1B2

a2C1 D1 C1B2

C2 0 D2

 ∈ B
(
C⊕

(
(

m⊕
i=1

Hi)⊕ (
n⊕

i=m+1

Hi)
))
,

is an isometric colligation, V satisfies property Fm(n) and

τV (z) = τV1(z1, . . . , zm)τV2(zm+1, . . . , zn) (z ∈ Dn).
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Now to prove the reverse direction, we assume in addition that τV (0) 6= 0 (for the case of
transfer functions vanishing at the origin, see Section 4) : Suppose H1, . . . ,Hn are Hilbert
spaces and

(2.1) V =

 a B1 B2

C1 D11 D12

C2 0 D22

 ∈ B(C⊕Hm
1 ⊕Hn

m+1),

is an isometric colligation satisfying property Fm(n). Thus

(2.2) aD12 = C1B2.

Suppose a := τV (0) 6= 0. Since V ∗V = I, we have

|a|2 + C∗
1C1 + C∗

2C2 = 1,

implies that
1− C∗

2C2 = |a|2 + C∗
1C1 > 0,

as a 6= 0. Then there exists a scalar β, 0 < |β| ≤ 1, such that

|β|2 = 1− C∗
2C2.

It now follows that

(2.3) C∗
1C1 = |β|2 − |a|2,

and

(2.4) α :=
a

β
,

is a non-zero scalar. Define

V1 =

 α B1 0
1
β
C1 D11 0

0 0 I

 and V2 =

 β 0 1
α
B2

0 I 0
C2 0 D22

 ,
on C⊕Hm

1 ⊕Hn
m+1. It follows from (2.3) and (2.4) that

|α|2 + 1

|β|2
C∗

1C1 = |α|2 + 1

|β|2
(|β|2 − |a|2) = 1 + |α|2 − |a|2

|β|2
= 1

that is

(2.5) |α|2 + 1

|β|2
C∗

1C1 = 1.

Also, we see that B∗
1B1 +D∗

11D11 = I, and

ᾱB1 +
1

β̄
C∗

1D11 =
1

β̄
(ᾱβ̄B1 + C∗

1D11) =
1

β̄
(āB1 + C∗

1D11) = 0,

and hence V ∗
1 V1 = I. We now proceed to prove that V2 is also an isometry. First, it easy to

see that āB2 + C∗
1D12 + C∗

2D22 = 0, and hence, by (2.2), we have

0 = āB2 + C∗
1D12 + C∗

2D22 = āB2 +
1

a
C∗

1C1B2 + C∗
2D22 =

ā2
α
(|α|2 + 1

|β|2
C∗

1C1)B2 + C∗
2D22.
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Then (2.5) implies that β̄
α
B2 + C∗

2D22 = 0. Finally, again from V ∗V = I we get

B∗
2B2 +D∗

12D12 +D∗
22D22 = I.

Now again by (2.2) we have

B∗
2B2 +D∗

12D12 +D∗
22D22 = B∗

2(1 +
1

|a|2
C∗

1C1)B2 +D∗
22D22

=
1

|α|2
B∗

2(|α|2 +
1

|β|2
C∗

1C1)B2 +D∗
22D22,

so that 1
|α|2B

∗
2B2 + D∗

22D22 = I, by (2.5), from which we conclude that V ∗
2 V2 = I. Finally,

notice that

V1V2 =

αβ B1 B2

C1 D11
1
αβ
C1B2

C2 0 D22

 =

 a B1 B2

C1 D11
1
a
C1B2

C2 0 D22

 ,
and hence V = V1V2, by (2.2). Then, by Theorem 2.2, we have

τV (z) = τṼ1
(z1, . . . , zm)τṼ2

(zm+1, . . . , zn),

for all z ∈ Dn where Ṽ1 =

[
α B1

1
β
C1 D11

]
and Ṽ2 =

[
β 1

α
B2

C2 D22

]
. Thus we have proved the

following statement:

Theorem 2.3. Suppose H1, . . . ,Hn are Hilbert spaces and a be a non-zero scalar. If

V =

 a B1 B2

C1 D11
1
a
C1B2

C2 0 D22

 ∈ B
(
C⊕

(
(

m⊕
i=1

Hi)⊕ (
n⊕

i=m+1

Hi)
))
,

is an isometric colligation, then

Ṽ1 =

[
α B1

1
β
C1 D11

]
and Ṽ2 =

[
β 1

α
B2

C2 D22

]
.

are isometric colligations in B
(
C⊕ (

m⊕
i=1

Hi)
)
and B

(
C⊕ (

n⊕
i=m+1

Hi)
)
, respectively, and

τV (z) = τṼ1
(z1, . . . , zm)τṼ2

(zm+1, . . . , zn) (z ∈ Dn),

where α and β are non-zero scalars and satisfies the following conditions

|β|2 = |a|2 + C∗
1C1 and α =

a

β
.

Summing up the results of Theorems 2.2 and 2.3, we conclude the following factorization
theorem on Schur-Agler class functions in SA(Dn), n ≥ 2:

Theorem 2.4. Let 1 ≤ m < n, and let θ ∈ SA(Dn). If θ(0) 6= 0, then

θ(z) = φ(z1, · · · , zm)ψ(zm+1, · · · , zn) (z ∈ Dn),
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for some φ ∈ SA(Dm) and ψ ∈ SA(Dn−m) if and only if

θ(z) = τV (z) (z ∈ Dn),

for some isometric colligation V satisfying property Fm(n).

We again point out that the assumption θ(0) 6= 0 is not needed to prove the necessary part
of the above theorem. Classification of factorizations of functions vanishing at the origin will
be discussed in detail in Section 4.

3. Factorizations and Property F(n)

In this section we investigate general n-variables Schur-Agler class factors of Schur-Agler
class functions in SA(Dn). More specifically, for a given θ ∈ SA(Dn), we give a set of
necessary and sufficient conditions on isometric colligations ensuring the existence of φ and
ψ in SA(Dn) such that θ = φψ. We identify a new class of isometric colligations, namely
F(n), and prove that the (Schur-Agler class) factors of Schur-Agler class functions are com-
pletely determined by isometric colligations satisfying property F(n). Here we do not set any
restriction on n, that is, we will assume that n ≥ 1.

We first identify the relevant isometric colligations:

Definition 3.1. We say that an isometry V ∈ B(H) satisfies property F(n) if there exist
Hilbert spaces {Mi}ni=1 and {Ni}ni=1 such that

H = C⊕
( n⊕

i=1

(Mi ⊕Ni)
)
,

and representing V as

V =


a B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 ∈ B
(
C⊕

( n⊕
i=1

(Mi ⊕Ni)
))
,

and Bi, Ci and Dij as

Bi =
[
Bi(1) Bi(2)

]
∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)
Ci(2)

]
∈ B(C,Mi ⊕Ni),

and

Dij =

[
Dij(1) Dij(12)
Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj,Mi ⊕Ni),

one has

Dij(21) = 0, and aDij(12) = Ci(1)Bj(2),

for all i, j = 1, . . . , n.
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As in Section 2, here we also first prove that a pair of isometric colligations is naturally
associated with an isometric colligation satisfying property F(n). Let {Mi}ni=1 and {Ni}ni=1

be Hilbert spaces, and let

V1 =

[
α B
C D

]
=


α B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 ∈ B(C⊕Mn
1 ),

and

V2 =

[
β F
G H

]
=


β F1 · · · Fn

G1 H11 · · · H1n
...

...
. . .

...
Gn Hn1 · · · Hnn

 ∈ B(C⊕N n
1 ),

be isometric colligations. Given i = 1, . . . , n, we define Hi = Mi ⊕ Ni, and bounded linear
operators B̃i, C̃i and D̃ij as

B̃i =
[
Bi 0

]
∈ B(Hi,C), C̃i =

[
Ci

0

]
∈ B(C,Hi), and D̃ij =

[
Dij 0
0 δijI

]
∈ B(Hj,Hi),

for all i, j = 1, . . . , n. Set

(3.1) Ṽ1 =


α B̃1 · · · B̃n

C̃1 D̃11 · · · D̃1n
...

...
. . .

...

C̃n D̃n1 · · · D̃nn

 ∈ B(C⊕Hn
1 ).

On the other hand, let

(3.2) Ṽ2 =


β F̃1 · · · F̃n

G̃1 H̃11 · · · H̃1n
...

...
. . .

...

G̃n H̃n1 · · · H̃nn

 ∈ B(C⊕Hn
1 ),

where

F̃i =
[
0 Fi

]
∈ B(Hi,C), G̃i =

[
0
Gi

]
∈ B(C,Hi), and H̃ij =

[
δijI 0
0 Hij

]
∈ B(Hj,Hi),

for all i, j = 1, . . . , n. Define V = Ṽ1Ṽ2. It then follows that V ∈ B(C ⊕Hn
1 ) is an isometry

and

(3.3) V =


αβ B̂1 · · · B̂n

Ĉ1 D̂11 · · · D̂1n
...

...
. . .

...

Ĉn D̂n1 · · · D̂nn

 :=

[
αβ B̂

Ĉ D̂

]
,
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where

(3.4) B̂i =
[
Bi αFi

]
∈ B(Hi,C), Ĉi =

[
βCi

Gi

]
∈ B(C,Hi), and D̂ij =

[
Dij CiFj

0 Hij

]
,

for all i, j = 1, . . . , n. Define X(z) : C → C, z ∈ Dn, by

X(z) = B̂(IHn
1
− EH(z)D̂)−1EH(z)Ĉ.

Then τV (z) = αβ +X(z), z ∈ Dn. Next, define the flip operator η : Hn
1 → Mn

1 ⊕N n
1 , by

(3.5) η
( n⊕

i=1

(fi ⊕ gi)
)
= (

n⊕
i=1

fi)⊕ (
n⊕

i=1

gi),

for all fi ∈ Mi and gi ∈ Ni, i = 1, . . . , n. Then η is a unitary operator and so

X(z) = (B̂η∗)
(
IMn

1⊕Nn
1
− (ηEHn

1
(z)η∗)(ηD̂η∗)

)−1

(ηEHn
1
(z)η∗)(ηĈ).

On the other hand, the definition of the flip operator η reveals that

B̂η∗ =
[
B αF

]
, ηĈ =

[
βC
G

]
, ηD̂η∗ =

[
D CF
0 H

]
, and ηEHn

1
(z)η∗ =

[
EMn

1
(z) 0

0 ENn
1
(z)

]
.

In particular, this yields

IMn
1⊕Nn

1
− (ηEHn

1
(z)η∗)(ηD̂η∗) =

[
I − EMn

1
(z)D −EMn

1
(z)CF

0 I − ENn
1
(z)H

]
(z ∈ Dn).

In order to further ease the notation, for Hilbert spaces {Si}ni=1 and z ∈ Dn, we set

ES(z) =
n⊕

i=1

ziISi
,

and, for Y ∈ B(
n⊕

i=1

Si), ‖Y ‖ ≤ 1, define r(z, Y ) =
(
ISn

1
− ES(z)Y

)−1

.

Continuing the above computation, for each z ∈ Dn, we now have(
IMn

1⊕Nn
1
− (ηEHn

1
(z)η∗)(ηD̂η∗)

)−1

=

[
r(z, D) r(z, D)EMn

1
(z)CFr(z, H)

0 r(z, H)

]
.

Moreover, since (ηEHn
1
(z)η∗)(ηĈ) =

[
βEMn

1
(z)C

ENn
1
(z)G

]
, it follows that

X(z) =
[
B αF

] [βr(z, D)EMn
1
(z)C + r(z, D)EMn

1
(z)CFr(z, H)ENn

1
(z)G

r(z, H)ENn
1
(z)G

]
= βBr(z, D)EMn

1
(z)C +Br(z, D)EMn

1
(z)CFr(z, H)ENn

1
(z)G+ αFr(z, H)ENn

1
(z)G,

and so τV (z) = τV1(z)τV2(z), z ∈ Dn. We have therefore proved:
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Theorem 3.2. Suppose V1 =

[
α B
C D

]
∈ B

(
C ⊕ (

n⊕
i=1

Mi)
)

and V2 =

[
β F
G H

]
∈ B

(
C ⊕

(
n⊕

i=1

Ni)
)
are isometric colligations, and let V = Ṽ1Ṽ2, where Ṽ1 and Ṽ2 are as in (3.1) and

(3.2), respectively. Then the isometric colligation V ∈ B
(
C ⊕ (

n⊕
i=1

(Mi ⊕ Ni))
)
as in (3.3)

satisfies property F(n) and τV = τV1τV2.

We have the following interpretations of the above theorem: Let θ, φ, ψ ∈ SA(Dn), and

suppose θ = φψ. Suppose V1 =

[
α B
C D

]
and V2 =

[
β F
G H

]
are isometric colligations on

C⊕Mn
1 and C⊕N n

1 , respectively, and φ = τV1 , and ψ = τV2 . Then the isometric colligation
V = Ṽ1Ṽ2, as constructed in Theorem 3.2, satisfies property F(n) and τV (z) = τV1(z)τV2(z)
for all z ∈ Dn, that is, θ = τV .
Now we proceed to treat the converse of Theorem 3.2. Let V ∈ B(H) be an isometric

colligation, and let V satisfies property F(n). As in Theorem 2.3, here also we assume that
a := τV (0) 6= 0. Now

H = C⊕
( n⊕

i=1

(Mi ⊕Ni)
)
,

for some Hilbert spaces {Mi}ni=1 and {Ni}ni=1, and

(3.6) V =

[
a B
C D

]
=


a B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 ,
where

(3.7) Bi =
[
Bi(1) Bi(2)

]
∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)
Ci(2)

]
∈ B(C,Mi ⊕Ni),

and

(3.8) Dij =

[
Dij(1)

1
a
Ci(1)Bj(2)

0 Dij(2)

]
∈ B(Mj ⊕Nj,Mi ⊕Ni),

for all i, j = 1, . . . , n. Set

(3.9) D(1) =
[
Dij(1)

]n
i,j=1

∈ B(
n⊕

i=1

Mi), D(2) =
[
Dij(2)

]n
i,j=1

∈ B(
n⊕

i=1

Ni)

and

D(12) =
[
Dij(12)

]n
i,j=1

∈ B
( n⊕

i=1

Mi,
n⊕

i=1

Ni

)
,
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and consider the flip operator η :
(⊕n

i=1(Mi ⊕Ni)
)
→ (

⊕n
i=1Mi)⊕ (

⊕n
i=1Ni) (see (3.5)).

Then

ηDη∗ =

[
D(1) D(12)
0 D(2)

]
∈ B

(
(

n⊕
i=1

Mi)⊕ (
n⊕

i=1

Ni)
)
.

If we define Vη :=

[
1 0
0 η

]
V

[
1 0
0 η

]∗
, it then follows that Vη =

[
a Bη∗

ηC ηDη∗

]
is an isometry on

n⊕
i=1

(Mi ⊕Ni). Moreover, since Bη∗ =
[
B(1) B(2)

]
and ηC =

[
C(1) C(2)

]t
, we see that

Vη =

 a B(1) B(2)
C(1) D(1) 1

a
C(1)B(2)

C(2) 0 D(2)

 ∈ B
(
C⊕ (

n⊕
i=1

Mi)⊕ (
n⊕

i=1

Ni)
)
,

where

(3.10) B(i) =
[
B1(i) B2(i)

]
and C(i) =

[
C1(i)
C2(i)

]
,

for all i = 1, 2. We have now arrived at the setting of the proof of Theorem 2.4 (more
specifically, compare Vη with V in (2.1)). Following the constructions of V1 and V2 in the
proof of Theorem 2.4, we set

(3.11)


V1 =

[
α B(1)

1
β
C(1) D(1)

]
∈ B

(
C⊕ (

n⊕
i=1

Mi)
)

V2 =

[
β 1

α
B(2)

C(2) D(2)

]
∈ B

(
C⊕ (

n⊕
i=1

Ni)
)
,

where

|β|2 = |a|2 + C(1)∗C(1) = 1− C(2)∗C(2) and α =
a

β
.

Since a 6= 0, it follows that α (and β too) is a non-zero scalars. One may now proceed,
similarly as in the proof of Theorem 2.4, to see that V1 and V2 are isometries. Then, applying
Theorem 3.2 to the pair of isometries V1 and V2, we get the canonical pair of isometries Ṽ1 and
Ṽ2 such that τṼ1Ṽ2

= τV1τV2 . On the other hand, it follows directly from the construction of Ṽ1
and Ṽ2 (see (3.3)) that V = Ṽ1Ṽ2 and consequently, τV = τṼ1Ṽ2

= τV1τV2 . We have therefore
proved the following counterpart of Theorem 2.3 for isometric colligations satisfying property
F(n).

Theorem 3.3. Let V ∈ B(C⊕(
n⊕

i=1

(Mi⊕Ni))) be an isometric colligation, and let V satisfies

property F(n). If τV (0) 6= 0 and V admits the representation as in (3.6) with B, C and D as
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in (3.7) and (3.8), respectively, then

V1 =

[
α B(1)

1
β
C(1) D(1)

]
∈ B

(
C⊕ (

n⊕
i=1

Mi)
)

and V2 =

[
β 1

α
B(2)

C(2) D(2)

]
∈ B

(
C⊕ (

n⊕
i=1

Ni)
)
,

are isometric colligations where B(i), C(i) and D(i) are as in (3.9) and (3.10) and α and β
are non-zero scalars and satisfies the following conditions

|β|2 = |a|2 + C(1)∗C(1) and α =
a

β
.

Moreover, τV = τV1τV2.

This along with Theorem 3.2 yields the following classification of Schur-Agler class factors
of Schur-Agler class functions in SA(Dn), n ≥ 1:

Theorem 3.4. Suppose θ ∈ SA(Dn), and suppose that θ(0) 6= 0. Then θ = φψ for some
φ, ψ ∈ SA(Dn) if and only if θ = τV for some isometric colligation V satisfying property
F(n).

Given θ = τV for some isometric colligation V satisfying property F(n), as presented above,
we now know that θ = φψ for some φ, ψ ∈ SA(Dn). If V admits the representation as in
(3.6), then it follows moreover from (3.11) that

(3.12)

{
φ(z) = α + 1

β
B(1)(IMn

1
− EMn

1
(z)D(1))−1EMn

1
(z)C(1)

ψ(z) = β + 1
α
B(2)(INn

1
− ENn

1
(z)D(2))−1ENn

1
(z)C(2) (z ∈ Dn).

The assumption that θ(0) 6= 0 in the proof of the sufficient part will be discussed in Section
4. Also see Subsection 5.3 for a natural connection between Fm(n) and F(n), 1 ≤ m < n.

4. Functions vanishing at the origin

As pointed out in Remark 1.3, factorizations of functions vanishing at the origin reveals
more detailed structural properties of associated colligation matrices. To this end, in this
section, we present a complete description of the connection between isometric colligations
and Schur-Agler factors of Schur-Agler class functions vanishing at the origin. The case of
one variable Schur functions will serve well to illustrate the notation scheme for functions in
several variables that we adopt.

Suppose θ ∈ S(D), θ(0) = 0 and θ = φψ for some φ and ψ in S(D). The following two
cases can arise:

Case (i) φ(0) = 0 and ψ(0) 6= 0: Let φ = τV1 and ψ = τV2 , where V1 =

[
0 Q
R S

]
∈ B(C⊕H1)

and V2 =

[
x Y
Z W

]
∈ B(C ⊕ H2). Therefore Ṽ1 =

0 Q 0
R S 0
0 0 I

 and Ṽ2 =

x 0 Y
0 I 0
Z 0 W

 are



FACTORIZATIONS OF SCHUR FUNCTIONS 17

isometries in B(C⊕ (H1 ⊕H2)). On defining V := Ṽ1Ṽ2, we have the isometry

(4.1) V =

 0 B1 0
C1 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),

where  0 B1 0
C1 D1 D2

C2 0 D4

 =

 0 Q 0
xR S RY
Z 0 W

 .
We then have C1 = xR and D2 = RY , and consequently the condition R∗R = 1 yields

C1C
∗
1D2 = |x|2RR∗D2 = |x|2RR∗RY = |x|2RY = |x|2D2 = C∗

1C1D2,

as C∗
1C1 = |x|2(> 0). Moreover, with V as in (4.1), we compute τV as:

τV (z) =
[
B1 0

] (
I − z

[
D1 D2

0 D4

])−1

z

[
C1

C2

]
= z

[
B1 0

] [(I − zD1)
−1 (I − zD1)

−1zD2(I − zD4)
−1

0 (I − zD4)
−1

] [
C1

C2

]
= z

[
B1(I − zD1)

−1 zB1(I − zD1)
−1D2(I − zD4)

−1
] [C1

C2

]
,

and so

(4.2) τV (z) =
(
zB1(I − zD1)

−1
)(
C1 + zD2(I − zD4)

−1C2

)
(z ∈ D).

Substituting the values of B1, Ci, and Dj, i = 1, 2 and j = 2, 4, we have

τV (z) = (zB1(I−zD1)
−1)(C1+zD2(I−zD4)

−1C2) = (zQ(I−zD1)
−1)(xR+zRY (I−zW )−1Z),

and hence τV (z) = (zQ(I − zS)−1R)(x + zY (I − zW )−1Z) for all z ∈ D, which implies
that θ = τV . Thus, we have collected together all the necessary properties of the isometric
colligation V as:

(4.3) C1C
∗
1D2 = C∗

1C1D2 and C∗
1C1 > 0.

Conversely, suppose V is an isometric colligation as in (4.1), let θ = τV and let V satisfies the
conditions in (4.3). Let x be a non-zero scalar such that |x|2 = C∗

1C1. Define V1 ∈ B(C⊕H1)
and V2 ∈ B(C⊕H2) by

V1 =

[
0 B1

1
x
C1 D1

]
and V2 =

[
x 1

x̄
C∗

1D2

C2 D4

]
.

Note that |x|2 = 1 − C∗
2C2 = C∗

1C1. A simple computation then shows that V1 and V2 are
isometric colligations. Now we compute

τV (z) = zB1(1− zD1)
−1C1 + z2B1(1− zD1)

−1D2(1− zD4)
−1C2,

and

τV1(z)τV2(z) = zB1(1− zD1)
−1C1 + z2B1(1− zD1)

−1{ 1

|x|2
C1C

∗
1D2}(1− zD4)

−1C2.
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Thus, τV = τV1τV2 where τV (0) = τV1(0) = 0 and τV2(0) 6= 0.

Case (ii) φ(0) = ψ(0) = 0: Suppose φ = τV1 and ψ = τV2 , where V1 =

[
0 Q
R S

]
∈ B(C ⊕H1)

and V2 =

[
0 Y
Z W

]
∈ B(C⊕H2) are isometric colligations. We associate with V1 and V2 the

isometric colligation

V =

0 Q 0
R S 0
0 0 I

0 0 Y
0 I 0
Z 0 W

 =

0 Q 0
0 S RY
Z 0 W

 ,
in B(C⊕H1 ⊕H2) and set

(4.4) V =

 0 B1 0
0 D1 D2

C2 0 D4

 .
Then, in view of (4.2), it follows that θ = τV . Also we pick the essential properties of the
isometric colligation V as

(4.5) X∗X = 1, X∗D1 = 0, and D2 = XY,

where X = R. Note that the first two equalities follows from the fact that V1 is an isometry.
To prove the converse, suppose V is an isometric colligation as in (4.4), θ = τV , X ∈ B(C,H2)
is an isometry, Y ∈ B(H2,C) and the conditions in (4.5) hold. Since V ∗V = I, we haveC∗

2C2 0 C∗
2D4

0 B1B
∗
1 +D∗

1D1 D∗
1D2

D∗
4C2 D∗

2D1 D∗
2D2 +D4D

∗
4

 = IC⊕H1⊕H2 ,

and hence V1 :=

[
0 B1

X D1

]
∈ B(C⊕H1) is an isometric colligation. Since D2 = XY , D∗

2D2 =

Y ∗Y , and henceD∗
2D2+D

∗
4D4 = I yields Y ∗Y +D∗

4D4 = I. Thus V2 :=

[
0 Y
C2 D4

]
∈ B(C⊕H2)

is an isometric colligation. For all z ∈ D, we have

τV1(z)τV2(z) = z2B1(1− zD1)
−1XY (1− zD4)

−1C2,

and, on the other hand, in view of (4.2), we have

τV (z) = z2B1(1− zD1)
−1D2(1− zD4)

−1C2.

This and XY = D2 implies that θ = τV = τV1τV2 . Thus we have proved the following:

Theorem 4.1. Suppose θ ∈ S(D) and θ(0) = 0. Then:
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(1) θ = φψ for some φ, ψ ∈ S(D) and ψ(0) 6= 0 if and only if there exists an isometric
colligation

V =

 0 B1 0
C1 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),

such that C1C
∗
1D2 = C∗

1C1D2, C
∗
1C1 > 0, and θ = τV .

(2) θ = φψ for some φ, ψ ∈ S(D) and φ(0) = 0 = ψ(0) if and only if there exists an
isometric colligation

V =

 0 B1 0
0 D1 D2

C2 0 D4

 ∈ B(C⊕ (H1 ⊕H2)),

such that θ = τV , X
∗D1 = 0, and D2 = XY for some Y ∈ B(H2,C) and isometry X ∈

B(C,H2).

The general case of functions vanishing at the origin in several variables (in SA(Dn) or
M1(H

2
n)) can be studied using the technique developed in the proof of Theorem 4.1. In

particular, similar arguments allow us to obtain also a similar classification of factorizations
for functions in SA(Dn) vanishing at the origin. We only state the result in the setting of
Section 3 and leave out the details to the reader.

Theorem 4.2. Suppose θ ∈ AS(Dn) and θ(0) = 0. Then:
(1) θ = φψ for some φ, ψ ∈ SA(Dn) and ψ(0) 6= 0 if and only if there exist Hilbert spaces

{Hi}ni=1, {Mi}ni=1 and {Ni}ni=1 and an isometric colligation

V =

[
0 B
C D

]
=


0 B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 ∈ B(C⊕ (
n⊕

i=1

Hi))

such that θ = τV and Hk = Mk ⊕Nk, k = 1, . . . , n, and representing Bi, Ci an Dij as

Bi = [Bi(1), Bi(2)] ∈ B(Mi ⊕Ni,C), Ci =

[
Ci(1)
Ci(2)

]
∈ B(C,Mi ⊕Ni),

and Dij =

[
Dij(1) Dij(12)
Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj,Mi ⊕Ni), one has Bi(2) =, Dij(21) = 0, and

C(1)C(1)∗D(12) = C(1)∗C(1)D(12) and C(1)∗C(1) > 0,

where i, j = 1, . . . , n, and C(1) =

C1(1)
...

Cn(1)

 and D(12) =
[
Dij(12)

]n
i,j=1

.

(2) θ = φψ for some φ, ψ ∈ SA(Dn) and φ(0) = 0 = ψ(0) if and only if there exist

Hilbert spaces {Hi}ni=1, {Mi}ni=1 and {Ni}ni=1, an isometry X ∈ B(C,
n⊕

i=1

Mi), a bounded



20 DEBNATH AND SARKAR

linear operator Y ∈ B(
n⊕

i=1

Ni,C) and an isometric colligation

V =

[
0 B
C D

]
=


0 B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 ∈ B
(
C⊕ (

n⊕
i=1

Hi)
)
,

such that θ = τV and Hk = Mk ⊕Nk, k = 1, . . . , n, and representing Bi, Ci an Dij as

Bi = [Bi(1), Bi(2)] ∈ B
(
Mi ⊕Ni,C

)
, Ci =

[
Ci(1)
Ci(2)

]
∈ B

(
C,Mi ⊕Ni

)
,

and Dij =

[
Dij(1) Dij(12)
Dij(21) Dij(2)

]
∈ B(Mj ⊕Nj,Mi ⊕Ni), one has Bi(2) = 0, Ci(1) = 0, and

Dij(21) = 0, D(12) = XY and X∗D(1) = 0,

where

D(1) = [Dij(1)]
n
i,j=1 ∈ B

( n⊕
p=1

Mp

)
, and D(12) =

[
Dij(12)

]n
i,j=1

∈ B
( n⊕

p=1

Np,
n⊕

p=1

Mp

)
.

5. Examples and remarks

This section is devoted to some concrete examples, further results and general remarks
concerning Schur functions.

5.1. One variable factors. Our interest here is to analyze Schur-Agler class functions in
SA(Dn) which can be factored as a product of n Schur functions. More specifically, let

φ ∈ SA(Dn) and let φ(0) 6= 0. Suppose φ(z) =
n∏

i=1

φi(zi), z ∈ Dn, for some φi ∈ S(D),

i = 1, . . . , n. Then there exist isometric colligations Vi =

[
a1 B̂i

Ĉi D̂i

]
∈ B(C ⊕ Hi) such that

φi = τVi
, for all i = 1, . . . , n. Let a =

∏n
i=1 ai, and define

V̂1 =

a1 B̂1 0

Ĉ1 D̂1 0
0 0 I

 , Ṽn =

an 0 B̂n

0 I 0

Ĉn 0 D̂n

 and V̂i =


ai 0 B̂i 0
0 I 0 0

Ĉi 0 D̂i 0
0 0 0 I

 ,
in B(C⊕H1 ⊕Hn

2 ), B(C⊕Hn−1
1 ⊕Hn), and B(C⊕Hi−1

1 ⊕Hi ⊕Hn
i+1) respectively and for

all 1 < i < n. Then V =
∏n

i=1 V̂i, is an isometry in B(C⊕Hn
1 ). Moreover, it follows that

(5.1) V =

[
a B
C D

]
=


a B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn


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where

Bi = (
i−1∏
k=1

ak)B̂i, Ci = (
n∏

k=i+1

ak)Ĉi, and Dij =


D̂i if i = j

0 if i > j

(ai+1 · · · aj−1)ĈiB̂j if i < j.

Hence aDi,j = CiBj, for all 1 6 i < j 6 n. Then by repeated application of Theorem 2.2, we
have φ = τV . The converse, as stated below, follows directly from repeated applications of
Theorem 2.3. We have thus proved the following theorem.

Theorem 5.1. Suppose θ ∈ SA(Dn) and θ(0) 6= 0. Then θ(z) =
n∏

i=1

θi(zi), z ∈ Dn for

some Schur functions {θi}ni=1 ⊆ S(D) if and only if θ = τV for some isometric colligation

V =

[
a B
C D

]
=


a B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 on C⊕
( n⊕

i=1

Hi

)
such that Dij =


Di if i = j

0 if i > j
1
a
CiBj if i < j

.

5.2. Examples. Here we aim at applying our results to some concrete examples.

Example 1: Let φ ∈ S(D) and φ = τV0 for some isometric colligation V0 =

[
a B
C D

]
∈ B(C⊕H).

Now we consider ψ(z) = zm, z ∈ D and m ∈ N. One then shows that

Vm =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 ∈ B(C⊕ Cm),

is an isometric colligation and ψ = τVm . Set θ = φψ = τV0τVm . Then by Theorem 3.2 (or
more specifically, by (3.3)) it follows that τV (z) = zmφ(z), z ∈ D, where V ∈ B(C⊕H⊕Cm)
is an isometric colligation with the following representation

V =



0 B a 0 0 · · · 0
0 D C 0 0 · · · 0
0 0 0 1 0 · · · 0
0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1
1 0 0 0 0 · · · 0


∈ B(C⊕ (H⊕ C)⊕ Cm−1).

Example 2: Our second example concerns Blaschke factors: If λ ∈ D, then the Blaschke factor
bλ ∈ Aut(D) is defined by

bλ(z) =
z − λ

1− λ̄z
(z ∈ D).
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Now observe that, for each λ ∈ D, the matrix Vλ =

[
−λ

√
1− |λ|2√

1− |λ|2 λ̄

]
∈ B(C⊕C) is an

isometric colligation and bλ = τVλ
. Now, suppose α, β ∈ D and θ(z) = bα(z1)bβ(z2), z ∈ D2.

Then Theorem 2.2 implies that θ = τV , where

V =

 αβ
√

1− |α|2 −α
√

1− |β|2
−β

√
1− |α|2 ᾱ

√
1− |α|2

√
1− |β|2√

1− |β|2 0 β̄

 ,
is an isometric colligation in M3(C).

5.3. On Fm(n) and F(n). Let 1 ≤ m < n. Suppose V ∈ B(C ⊕ Hm
1 ⊕ Hn

m+1) satisfies
property Fm(n). On account of Theorem 2.3, we have

τV (z) = τV1(z1, . . . , zm)τV2(zm+1, . . . , zn) (z ∈ Dn),

for some isometric colligations V1 ∈ B(C ⊕ Hm
1 ) and V2 ∈ B(C ⊕ Hn

m+1). Note that τV1 ∈
SA(Dm) and τV2 ∈ SA(Dn−m). The above factorization and Theorem 3.4 further implies

that τV = τṼ for some isometric colligation Ṽ ∈ B(C⊕
( n⊕

i=1

(Mi ⊕Ni)
)
) satisfying property

F(n). It is then natural to ask to what extent one can recover Ṽ from V . To determine the
isometric colligation Ṽ , we proceed as follows: First, we let

(5.2) V =


a B1 · · · Bn

C1 D11 · · · D1n
...

...
. . .

...
Cn Dn1 · · · Dnn

 ∈ B(C⊕Hn
1 ),

where Dij = 0 for i = m + 1, . . . , n and j = 1, . . . ,m; aDij = CiBj for i = 1, . . . ,m and
j = m+ 1, . . . , n. Let L be a Hilbert space. Set

Ki =

{
Hi ⊕ L if 1 ≤ i ≤ m

L ⊕Hi if m+ 1 ≤ i ≤ n.

We now define

Yi =


[
Bi 0

]
if 1 ≤ i ≤ m

[
0 Bi

]
if m+ 1 ≤ i ≤ n,

Zi =



[
Ci

0

]
if 1 ≤ i ≤ m

[
0

Ci

]
if m+ 1 ≤ i ≤ n,
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and

Wij =



[
Dij 0

0 δijIL

]
if 1 ≤ i, j ≤ m

[
δijIL 0

0 Dij

]
if m+ 1 ≤ i, j ≤ n,

and

Wij =



[
0 Dij

0 0

]
if 1 ≤ i ≤ m, m+ 1 ≤ j ≤ n

[
0 0

Dij 0

]
if m+ 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Then, after some manipulations, it follows that the isometric colligation

(5.3) Ṽ :=


a Y1 · · · Yn
Z1 W11 · · · W1n
...

...
. . .

...
Zn Wn1 · · · Wnn

 ∈ B(C⊕Kn
1 ),

satisfies property F(n) and τV = τṼ . More specifically, we have proved the following:

Theorem 5.2. Suppose 1 ≤ m < n and let V satisfies property Fm(n). If the representation
of V is given by (5.2), then τV = τṼ , where Ṽ is given by (5.3) and satisfies property F(n).

5.4. Factorizations of multipliers on the ball. Here we are interested in factorizations of
multipliers of the Drury-Arveson space on the unit ball Bn in Cn [8]. However (and curiously, if
not surprisingly), the computations involved in representing multiplier factors of multipliers of
the Drury-Arveson space seem relatively simpler than that of the Schur-Agler class functions
on the polydisc. We omit details here and present only the final result.
Recall that the Drury-Arveson space, denoted by H2

n, is the Hilbert space of holomorphic
functions on Bn corresponding to the reproducing kernel (cf. [8])

k(z,w) = (1−
n∑

i=1

ziw̄i)
−1 (z,w ∈ Bn).

A complex-valued function φ on Bn is said to be a multiplier if φH2
n ⊆ H2

n. If φ is a
multiplier, then Mφf 7→ φf , f ∈ H2

n, defines a bounded operator on H2
n. We let M(H2

n)
denote the commutative Banach algebra of multipliers equipped with the operator norm
‖φ‖ := ‖Mφ‖B(H2

n)
. Also we define

M1(H
2
n) = {φ ∈ M(H2

n) : ‖φ‖ ≤ 1}.
The following characterization of multipliers (see [8, 14]), parallel to the transfer function
realizations of Schur-Agler class functions on Dn (see Theorem 1.2), is the starting point:
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Suppose φ is a complex-valued function on Bn. Then φ ∈ M1(H
2
n) if and only if there exist

a Hilbert space H and an isometric colligation V =

[
a B
C D

]
: C ⊕ H → C ⊕ Hn such that

φ = τV , where

τV (z) = a+B(IH − EHn(z)D)−1EHn(z)C (z ∈ Bn).

Here given a Hilbert space H, we denote by Hn the n-copies of H, and EHn : Bn → B(Hn,H)
the row operator EHn(z) = (z1IH, . . . , znIH), z ∈ Bn.
We omit the proof of the following result which is similar (in spirit) to the case of SA(Dn).

Theorem 5.3. Suppose θ ∈ M1(H
2
n) and θ(0) 6= 0. There exist multipliers φ ∈ M1(H

2
m)

and ψ ∈ M1(H
2
n−m) such that θ(z) = φ(z1, . . . , zm)ψ(zm+1, . . . , zn), z ∈ Dn, if and only if

θ = τV for some isometric colligation

V =

[
a B
C D

]
: C⊕ (H1 ⊕H2) → C⊕ (H1 ⊕H2)

n,

such that writing B =
[
B(1) B(2)

]
, C =

[
C1 . . . Cn

]t
and D =

[
D1 . . . Dn

]t
, one has

Cj =



[
Cj(1)

0

]
if 1 ≤ j ≤ m

[
0

Cj(2)

]
if m+ 1 ≤ j ≤ n,

Dj =



[
Dj(1) Dj(2)

0 0

]
if 1 ≤ j ≤ m

[
0 0

0 Dj(3)

]
if m+ 1 ≤ j ≤ n,

and aDi(2) = Ci(1)B(2) for all i = 1, . . . ,m.

5.5. Reversibility of factorizations. A natural question to ask in connection with Theorem
3.4 is whether the canonical constructions of the colligation V (out of a pair of isometric
colligations V1 and V2) satisfying property F(n) as in (3.3) and V1 and V2 (out of an isometric
colligation V satisfying property F(n)) as in (3.11) are reversible.

To answer this, we proceed as follows: Given n ∈ N, we let C(n) denote the set of all

isometric colligations of the form

[
a B
C D

]
∈ B(C⊕

( n⊕
i=1

Hi

)
) for some Hilbert spaces {Hi}ni=1,

and let F (n) denote the set of all isometric colligations satisfying property F(n). Define
π : C(n)× C(n) → F (n) by

π(V1, V2) = V (V1, V2 ∈ C(n)),

where V is as in (3.3) (or Theorem 3.2). Also define κ : F (n) → C(n)× C(n) by

κ(V ) = (V1, V2) (V ∈ F (n)),

where V1 and V2 are as in (3.11). Given V1 and V2 in C(n), the aim here is to compare

κ(π(V1, V2)) with (V1, V2). Suppose V1 =

[
α B
C D

]
∈ B

(
C ⊕ (

n⊕
i=1

Mi)
)
and V2 =

[
β F
G H

]
∈
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B
(
C⊕ (

n⊕
i=1

Ni)
)
are isometric colligations and a = αβ 6= 0. Then by (3.3), it follows that

π(V1, V2) ∈ B
(
C⊕ (

n⊕
i=1

(Mi ⊕Ni))
)
, and π(V1, V2) =


αβ B̂1 · · · B̂n

Ĉ1 D̂11 · · · D̂1n
...

...
. . .

...

Ĉn D̂n1 · · · D̂nn

 ,
where B̂i, Ĉi and D̂ij, i, j = 1, . . . , n, are given by as in (3.4). Since π(V1, V2) satisfies property

F(n), in view of (3.11), it follows that κ(π(V1, V2)) = (Ṽ1, Ṽ2), where

Ṽ1 =


α̃ B1 · · · Bn

β

β̃
C1 D11 · · · D1n

...
...

. . .
...

β

β̃
Cn Dn1 · · · Dnn

 and Ṽ2 =


β̃ α

α̃
F1 · · · α

α̃
Fn

G1 H11 · · · H1n
...

...
. . .

...
Gn Hn1 · · · Hnn

 ,
and α̃ and β̃ are non-zero scalars satisfying the following relations

|β̃|2 = |α|2|β|2 + |β|2
( n∑

i=1

C∗
i Ci

)
and α̃ =

αβ

β̃
.

But we know from V ∗
1 V1 = I that |α|2 + C∗C = 1, that is |α|2 +

∑n
i=1C

∗
i Ci = 1. So β̃ = ε̄β

and α̃ = εα for some unimodular constant ε. Hence

κ ◦ π
([

α B
C D

]
,

[
β F
G H

])
=

([
εα B
εC D

]
,

[
ε̄β ε̄F
G H

])
,

where ε is an unimodular constant.
One could equally consider the same question for Theorem 2.4. The answer is similar and

we leave the details to the reader.
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[30] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. II., J. Reine Angew.
Math. 148 (1918), 122–145.
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